Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

نویسندگان

  • Jean - Pierre Dubois
  • Rania Minkara
  • Rafic Ayoubi
چکیده

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal” algorithm. Since diversity combining is especially effective in small femtoand pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4 generation networks. Keywords—Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect ch...

متن کامل

Symbol Error Rate of Quadrature Subbranch Hybrid Selection/Maximal-Ratio Combining in Rayleigh Fading Under Employment of Generalized Detector

The symbol-error rate (SER) of a quadrature subbranch hybrid selection/maximal-ratio combining scheme for 1-D modulations in Rayleigh fading under employment of the generalized receiver, which is constructed based on the generalized approach to signal processing in noise, is investigated. At the generalized receiver, N diversity branches are split into 2N in-phase and quadrature subbranches. Tr...

متن کامل

MARGINAL MOMENT GENERATING FUNCTION BASED ANALYSIS OF CHANNEL CAPACITY OVER CORRELATED NAKAGAMI-m FADING WITH MAXIMAL-RATIO COMBINING DIVERSITY

In this paper, we have investigated the marginal moment generating function (MMGF) for the correlated Nakagami-m fading channel by using maximal-ratio combining (MRC) diversity scheme at receiver for the computation of channel capacity for various adaptive transmission schemes such as: 1) optimal simultaneous power and rate adaptation, 2) optimal rate adaptation with constant transmit power, 3)...

متن کامل

A Simple Transmit Diversity Technique For Wireless Communications - Selected Areas in Communications, IEEE Journal on

This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order o...

متن کامل

A simple transmit diversity technique for wireless communications

This paper presents a simple two-branch transmit diversity scheme. Using two transmit antennas and one receive antenna the scheme provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. It is also shown that the scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010